Stoichiometric model of Escherichia coli metabolism: incorporation of growth-rate dependent biomass composition and mechanistic energy requirements.

نویسندگان

  • J Pramanik
  • J D Keasling
چکیده

A stoichiometric model of metabolism was developed to describe the balance of metabolic reactions during steady-state growth of Escherichia coli on glucose (or metabolic intermediates) and mineral salts. The model incorporates 153 reversible and 147 irreversible reactions and 289 metabolites from several metabolic data bases for the biosynthesis of the macromolecular precursors, coenzymes, and prosthetic groups necessary for synthesis of all cellular macromolecules. Correlations describing how the cellular composition changes with growth rate were developed from experimental data and were used to calculate the drain of precursors to macromolecules, coenzymes, and prosthetic groups from the metabolic network for the synthesis of those macromolecules at a specific growth rate. Energy requirements for macromolecular polymerization and proofreading, transport of metabolites, and maintenance of transmembrane gradients were included in the model rather than a lumped maintenance energy term. The underdetermined set of equations was solved using the Simplex algorithm, employing realistic objective functions and constraints; the drain of precursors, coenzymes, and prosthetic groups and the energy requirements for the synthesis of macromolecules served as the primary set of constraints. The model accurately predicted experimentally determined metabolic fluxes for aerobic growth on acetate or acetate plus glucose. In addition, the model predicted the genetic and metabolic regulation that must occur for growth under different conditions, such as the opening of the glyoxylate shunt during growth on acetate and the branching of the tricarboxylic acid cycle under anaerobic growth. Sensitivity analyses were performed to determine the flexibility of pathways and the effects of different rates and growth conditions on the distribution of fluxes. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 398-421, 1997.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110.

Flux balance models of metabolism use stoichiometry of metabolic pathways, metabolic demands of growth, and optimality principles to predict metabolic flux distribution and cellular growth under specified environmental conditions. These models have provided a mechanistic interpretation of systemic metabolic physiology, and they are also useful as a quantitative tool for metabolic pathway design...

متن کامل

Mathematical Modeling of the Temperature-Dependent Growth of Living Systems

In this investigation a non-equilibrium thermodynamic model of the temperature dependent biological growth of a living systems has been analyzed. The results are derived on the basis of Gompertzian growth equation. In this model, we have considered the temperature dependent growth rate and development parameter. The non-equilibrium thermodynamic model is also considered for exploring the variat...

متن کامل

Nanotoxicity for E. Coli and Characterization of Silver Quantum Dots Produced by Biosynthesis with Eichhornia crassipes

Nanomaterials are widely used in health and biomedical applications, however, only a few studies investigate their toxic effects.  The present report signifies a contribution to the study of the toxic effects of silver nanoparticles on   E. coli cells, which is a model organism of anthropogenic pollution. The toxicity of nanoparticles depends on their chemical and surface properties, shape and ...

متن کامل

Efficient Process Development of Recombinant Human Granulocyte Colony-Stimulating Factor (rh-GCSF) Production in Escherichia coli

Background: The protein hormone granulocyte colony-stimulating factor (GCSF) stimulates the production of white blood cells and plays an important role in medical treatment of cancer patients. Methods: An efficient process was developed for heterologous expression of human GCSF in E. coli BL21 (DE3). The feeding rate was adjusted to achieve the maximum attainable specific growth rate under crit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biotechnology and bioengineering

دوره 56 4  شماره 

صفحات  -

تاریخ انتشار 1997